Transmural difference in coronary arteriolar dilation to adenosine: effect of luminal pressure and K(ATP) channels.

نویسندگان

  • C Zhang
  • T W Hein
  • L Kuo
چکیده

Coronary blood flow in the subendocardium is preferentially increased by adenosine but is redistributed to the subepicardium during ischemia in association with coronary pressure reduction. The mechanism for this flow redistribution remains unclear. Since adenosine is released during ischemia, it is possible that the coronary microcirculation exhibits a transmural difference in vasomotor responsiveness to adenosine at various intraluminal pressures. Although the ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in coronary arteriolar dilation to adenosine, its role in the transmural adenosine response remains elusive. To address these issues, pig subepicardial and subendocardial arterioles (60-120 micrometer) were isolated, cannulated, and pressurized to 20, 40, 60, or 80 cmH(2)O without flow for in vitro study. At each of these pressures, vessels developed basal tone and dilated concentration dependently to adenosine and the K(ATP) channel opener pinacidil. Subepicardial and subendocardial arterioles dilated equally to adenosine and pinacidil at 60 and 80 cmH(2)O luminal pressure. At lower luminal pressures (i.e., 20 and 40 cmH(2)O), vasodilation in both vessel types was enhanced. Enhanced vasodilatory responses were not affected by removal of endothelium but were abolished by the K(ATP) channel inhibitor glibenclamide. In a manner similar to reducing pressure, a subthreshold dose of pinacidil potentiated vasodilation to adenosine. In contrast to adenosine, dilation of coronary arterioles to sodium nitroprusside was independent of pressure changes. These results indicate that coronary microvascular dilation to adenosine is enhanced at lower intraluminal pressures by selective activation of smooth muscle K(ATP) channels. Since microvascular pressure has been shown to be consistently lower in the subendocardium than in the subepicardium, it is likely that the inherent pressure gradient in the coronary microcirculation across the ventricular wall may be an important determinant of transmural flow in vivo during resting conditions or under metabolic stress with adenosine release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.

BACKGROUND AND PURPOSE Arterial hypoxia mediates cerebral arteriolar dilation primarily via mechanisms involving activation of ATP-sensitive K+ channels (K[ATP]), which we have shown to be sensitive to ischemic stress. In this study, we determined whether ischemia/reperfusion alters cerebral arteriolar responses to arterial hypoxia in anesthetized piglets. Since adenosine plays an important rol...

متن کامل

Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine.

PURPOSE Adenosine is a potent vasodilator of retinal microvessels and is implicated to be a major regulator of retinal blood flow during metabolic stress. However, the receptor subtypes and the underlying signaling mechanism responsible for the dilation of retinal microvessels in response to adenosine remain unclear. In the present study, the roles of specific adenosine receptor subtypes, nitri...

متن کامل

cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.

Adenosine is known to play an important role in the regulation of coronary blood flow during metabolic stress. However, there is sparse information on the mechanism of adenosine-induced dilation at the microcirculatory levels. In the present study, we examined the role of endothelial nitric oxide (NO), G proteins, cyclic nucleotides, and potassium channels in coronary arteriolar dilation to ade...

متن کامل

Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels.

Adenosine is a potent vasodilator that plays an important role in the regulation of coronary microvascular diameter. Although multiple adenosine receptor subtypes have been recently cloned, the specific adenosine receptor subtypes and the underlying mechanisms responsible for the vasodilation to adenosine in the coronary microcirculation remain unknown. Therefore, in the present study we determ...

متن کامل

Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs.

BACKGROUND AND PURPOSE N-Methyl-D-aspartate (NMDA) elicits neuronally mediated cerebral arteriolar vasodilation that is reduced by ischemia/reperfusion (I/R). This sequence has been preserved by pretreatment with the ATP-sensitive potassium (K(ATP)) channel opener aprikalim, although the mechanism was unclear. In the heart, mitochondrial K(ATP) channels (mitoK(ATP)) are involved in the ischemic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 279 6  شماره 

صفحات  -

تاریخ انتشار 2000